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An implicit time-marching algorithm for shallow water
models based on the generalized wave continuity

equation
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SUMMARY

Wave equation models currently discretize the generalized wave continuity equation with a three-time-
level scheme centered at k and the momentum equation with a two-time-level scheme centered at k+1/2;
non-linear terms are evaluated explicitly. However in highly non-linear applications, the algorithm
becomes unstable at even moderate Courant numbers. This paper examines an implicit treatment of the
non-linear terms using an iterative time-marching algorithm. Depending on the domain, results from
one-dimensional experiments show up to a tenfold increase in stability and temporal accuracy. The
sensitivity of stability to variations in the G-parameter (a numerical weighting parameter in the
generalized wave continuity equation) was examined; results show that the greatest increase in stability
occurs with G/�=2–50. In the one-dimensional experiments, three different types of node spacing
techniques—constant, variable, and LTEA (Localized Truncation Error Analysis)—were examined;
stability is positively correlated to the uniformity of the node spacing. Lastly, a scaling analysis
demonstrates that the magnitudes of the non-linear terms are positively correlated to those that most
influence stability, particularly the term containing the G-parameter. It is evident that the new algorithm
improves stability and temporal accuracy in a cost-effective manner. Copyright © 2001 John Wiley &
Sons, Ltd.

KEY WORDS: finite elements; generalized wave continuity; implicit time-marching; shallow water equa-
tions

1. INTRODUCTION

Shallow water equations are based on the depth-averaged equations of motion, subject to the
assumption of a hydrostatic pressure distribution; they are used by researchers and engineers

* Correspondence to: School of Civil Engineering and Environmental Science, University of Oklahoma, 202 West
Boyd Street, Room 334, Norman, OK 73019-1024, U.S.A. Tel.: +1 405 3255218; fax: +1 405 3254217.
1 E-mail: dresback@ou.edu

Copyright © 2001 John Wiley & Sons, Ltd.
Recei�ed 11 October 1999

Accepted 19 September 2000



K. M. DRESBACK AND R. L. KOLAR926

to model the hydrodynamic behavior of oceans, coastal areas, estuaries, lakes and im-
poundments [1]. Early finite element solutions of the primitive shallow water equations were
plagued with spurious oscillations. Lynch and Gray [2] in 1979 introduced the wave conti-
nuity equation (WCE), which suppressed the spurious oscillations without having to
dampen the solution either numerically or artificially. Kinnmark [3] determined that there
was no loss in the wave propagation characteristics of the wave continuity equation if,
during the formulation, the bottom friction � is replaced by a numerical parameter G, thus
developing the generalized wave continuity equation (GWCE). With this G-parameter, it is
possible to achieve a balance between the primitive form and pure wave form of the
shallow water equations. Several models have been developed from the GWCE and the
WCE since their inception 20 years ago, including the model used in this paper, ADCIRC
(an ADvanced three-dimensional CIRCulation model) [4,5].

With ADCIRC, non-linear applications have stability problems unless a severe Courant
number restriction is imposed. In practice, we have found that a practical upper bound of
the Courant number is 0.5 in order to maintain the stability of the model; an even tighter
constraint must be imposed if the simulation includes barrier islands and constricted inlets.
In order to relax this restriction, an alternative time-marching procedure was proposed that
treats some or all of the non-linear terms implicitly [6].

In the early years of finite element shallow water models, a number of studies looked at
time-marching, but often from a noise suppression point-of-view. For example, Lee and
Froehlich [7] summarize several time-marching procedures in their review paper on
shallow water equations, which covers everything from the trapezoidal rule to three-level
semi-implicit schemes. Gray and Lynch [8] studied several of the same time-marching pro-
cedures in greater detail. In their paper, they indicate that the best scheme for finite
element shallow water models is the three-level semi-implicit scheme. Several years later
Kinnmark and Gray [9] examined a semi-implicit wave equation that produced accurate
results, yet still treated some non-linear terms explicitly. Most of the more recent work with
GWCE-based models has focused either on incorporating more physics or minimizing spa-
tial error, e.g. alternative meshing criteria [10,11], wetting and drying [12], treatment of
boundary conditions [13,14], three-dimensional baroclinic simulations [15,16], and more ac-
curate estimates of the vertical velocity [17]. Furthermore, attempts to achieve timely simu-
lations have led to parallel codes [18,19]. Little recent work with GWCE-based models has
been devoted to alternative time-marching algorithms. The intent of this study is to fill this
gap, viz., an implicit treatment of non-linear terms in both the GWCE and the momentum
equation.

An implicit treatment can be realized by either simultaneous integration of the full
non-linear equations or a predictor–corrector algorithm. A predictor–corrector algorithm
was chosen over the simultaneous integration for the following reasons: (1) it can be easily
implemented within the framework of the existing ADCIRC code; and (2) it minimizes the
size of the matrices that must be stored and inverted. The primary goal of this article is to
assess the impact of the predictor–corrector algorithm on the stability, accuracy, and the
sensitivity of a one-dimensional version of the ADCIRC code.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 925–945
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2. SHALLOW WATER EQUATIONS

Many sources provide the full shallow water equations [2–5,10,20,21] so for purposes of
brevity, only the GWCE and non-conservative form of the momentum (NCM) equation will
be shown; they form the basis of the ADCIRC model. Below is the operator form of the
GWCE, where L represents the primitive continuity equation, MC is the conservative form of
the momentum equation and G is a numerical parameter

W G�
�L
�t

+GL−� · MC (1)

Lynch and Gray’s [2] WCE can be obtained by setting G=�, where � is the bottom friction
coefficient. It should be noted that the higher the value of G, the more the GWCE approaches
the primitive equation. Expanded versions of the GWCE and NCM equation are shown below
and all terms are described in the nomenclature section; the predominant terms are explained
below the equations. The abbreviations appearing above certain terms in these equations will
be discussed in subsequent sections.
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NCM Equation
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n
−

A
H

−
1
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where � is the elevation of the water surface above the datum, t is time, G is the numerical
parameter, v is the depth-averaged velocity of the fluid and H is the total fluid depth.

Algorithms based on these two equations result in solutions that compare well with
analytical solutions and field data for both elevation and velocity. The codes typically use
equal-order finite element interpolating functions (linear C0 elements). As presently derived,
semi-implicit time discretization of the GWCE uses a three-time-level approximation centered
at k, while time discretization of the NCM equation uses a lumped two-time-level approxima-
tion centered at k+1/2. Equations are linearized by formulating the non-linear terms
explicitly. Exact quadrature rules are used. Product terms in the equations are simplified by
linearly interpolating the products of the variables, not the individual variables. L2 interpola-
tion is applied to the advective terms in the equations. A time-splitting solution procedure is
adopted wherein the GWCE is first solved for nodal elevations and then the NCM equation
is solved for the velocity field. Resulting discrete equations can be found in Luettich et al. [4]
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3. CHANGES IN THE TIME-MARCHING ALGORITHM

As a point of departure, let us first look in more detail at the current time-marching algorithm
used in the ADCIRC model. As mentioned, it is a semi-implicit evaluation, i.e., the linear
terms of the equation are evaluated implicitly and the non-linear terms of the equation are
evaluated explicitly. At the past and present time levels in ADCIRC, elevation and velocity
values are known (either from initial conditions or previous calculations). The original
algorithm takes the elevation and velocity values for the past (k−1) and the present (k) and
uses them to calculate the values for the future (k+1) time level. However, the non-linear
terms are evaluated using only the elevation and velocity values at the present time level (k).
Kolar et al. [6] hypothesized that the stability constraint stems primarily from this explicit
evaluation of non-linear terms.

In order to evaluate the non-linear terms implicitly, a predictor–corrector algorithm is
introduced. Two stages are most commonly used in a predictor–corrector algorithm. In this
case the predictor stage is equivalent to the original algorithm, i.e. it evaluates the non-linear
terms using values from the present. Predicted future values obtained from the predictor step
(called k*) and the already known present (k) and past (k−1) values are then used to obtain
the corrected values for the future time level (k+1). The corrector stage can be repeated as
many times as necessary until convergence. However, if multiple iterations are required, this
iterative strategy will no longer be the most cost effective method of solution and a new form
of linearization would be sought.

Non-linear terms exist in both governing equations for ADCIRC—the NCM and GWCE.
Our study focuses on five dominant non-linear terms that are identified in Equations (2) and
(3). Four are from the GWCE: advective (ag), finite amplitude (fg), GWCE flux times G (Gg)
and GWCE flux times � (bg) and one is from the NCM equation, the advective term (am).
Table I summarizes the nomenclature for the non-linear terms in the governing equations.

Another issue with the predictor–corrector algorithm is the ‘best’ choice of time-weighting
factors for the non-linear terms. Time weights multiply the non-linear terms that are evaluated
at different levels. Note that time-weighting factors are only used in the corrector step of the
new algorithm because the predictor step is evaluated explicitly. Time weights are noted in the
equations by the abbreviations described above; the numbers that follow these abbreviations
represent the time levels (1, time level k+1 or k*; 2, time level k ; 3, time level k−1). Pseudo
code for the predictor–corrector algorithm for two of the non-linear terms is shown in Figure
1. The first box contains the predictor step for each of the non-linear terms; it uses no time

Table I. Nomenclature for non-linear terms.

Abbreviation Term Description

GWCE advectiveag � · Hvv
fg � · Hg�� GWCE finite amplitude
Gg G� · (Hv) GWCE flux times G
bg �� · (Hv) GWCE flux times �
am v · �v NCM advective

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 925–945



IMPLICIT TIME-MARCHING FOR GWCE-BASED SHALLOW WATER MODELS 929

Figure 1. Predictor–corrector equations (examples) for two non-linear terms—the GWCE and NCM
advective terms.

weights and provides the estimate of the elevation and velocity values at the future time level
(k*). The second box contains the corrector step for each of the non-linear terms; it shows how
the time weights multiply the non-linear terms at each time level. In the first corrector box of
Figure 1, we see ag1, ag2 and ag3, are the time weights for the k+1 (or k*), k, k−1 time
levels (future, present and past), respectively, for the advective term of the GWCE. Each
non-linear term follows the same representation. In theory, the time-weighting parameters for
the non-linear terms may equal any value as long as they sum to one; for practical reasons, the
values are restricted to lie between zero and one.

Table II illustrates some possible choices for the time weights. For this paper, ‘centered at
k ’ (example 1 in Table II) means that the time weights for the non-linear terms are weighted
equally between the three time levels; ‘centered at k+1/2’ (example 2 in Table II) means that
the terms are weighted equally between the first two time levels; ‘turned off’ (example 5 in
Table II) means that it is being evaluated explicitly, i.e. the original time-marching algorithm.
Exhaustive studies will be conducted on how the variation of these time-weighting parameters
affect the stability and accuracy of the code.

Table II. Possible combinations of the time-weighting parameters for the ag
non-linear term.

Example ag3 (k−1) Sumag1 (k* or k+1) ag2 (k)
number

0.33 1.00.331 0.34
1.00.00.50.52

0.2 1.03 0.6 0.2
4 1.00.00.20.8

1.00.01.00.05

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 925–945
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4. DOMAINS EVALUATED

One-dimensional studies using five different domains were conducted to determine if the
predictor–corrector algorithm improved the stability of ADCIRC. Common conditions used
in each of the domains are as follows: one-dimensional flow, constant bottom friction
coefficient of 10−4 s−1, a G/� ratio of 10 (constant unless noted otherwise) and eddy visocity
of 0. For each domain, the boundary conditions were as follows: forcing with a 1 m M2 tide
at the ocean boundary and no normal flux at the land boundary. The five domains evaluated
were: constant bathymetry (Figure 2(a)), three parabolic bathymetries with varying rates of rise
(Figure 2(b)) and the western North Atlantic bathymetry (east coast, Figure 2(c)). Maximum
and minimum depths for the parabolic bathymetries were 300 and 3 m, respectively, while for
the east coast bathymetry the values were 5000 and 20 m, respectively.

The constant bathymetry problem was evaluated using a constant spatial discretization with
�x based on a wavelength to node spacing ratio2 of 200 for the M2 tide, thus minimizing
spatial truncation errors. The three bathymetries—second-order, fourth-order and fifth-
order3—used two spatial discretizations, constant and variable. For the constant spatial

Figure 2. Schematics of the one-dimensional bathymetries: (a) constant, (b) quadratic-like, (c) east coast.

2 Abbreviated �/�x, where �=�gh×T and ?x is the distance between each node. In applications, the �/�x ratio is
recommended to be greater than 25.

3 Order of the bathymetry refers to the order of polynomial used to generate the bathymetry data.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 925–945
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discretization, the wavelength was determined using the shallowest bathymetry of the domain
and the time period for an M2 tidal constituent. Using a �/�x of 200, a �x value was then
determined and used throughout the domain. Thus, deeper portions of the domain were even
more finely resolved. Non-uniform spatial discretization was developed using a �/�x value of
300. Node placement for these grids are based on the bathymetry values at the current element
location, meaning that �x changes with the bathymetry. Spatial discretizations for the east
coast bathymetry include the constant and two non-uniform techniques, �/�x of 300 and the
LTEA (Localized Truncation Error Analysis) method. In the latter, which was developed by
Hagen [22], nodes are placed to minimize spatial truncation error.

Experiments conducted on the five bathymetries looked at the following: stability, which
includes looking at the impact of the non-linear terms, individually and together; the number
of corrector steps that are needed to obtain convergence and the maximum gains in stability;
sensitivity to the G/� ratio; and temporal accuracy. A scaling analysis was also performed to
determine if there was a correlation between the magnitude of the terms and the results from
the stability experiments. All tests are summarized in the experimental matrix given in Table
III. Note that for the last three experiments, we chose the second-order bathymetry to be
representative of the parabolic family.

5. NUMERICAL EXPERIMENTS AND DISCUSSION

5.1. Defining stability for non-linear simulations

Traditional stability studies, such as Fourier analysis, are valid for linear problems. Here, the
non-linear terms preclude the use of such analytical methods, thus numerical experiments were
used to determine stability. For each simulation, the maximum stable time step, to the nearest
5 s, was defined as that which can be used without causing overflow errors before the end of

Table III. Experimental matrix (× indicates experiments performed).

G sensitivityDomainsa ScalingStability—Iteration Stability— Temporal
accuracyall termsindividualanalysis analysisanalysis
analysis

Constant ×× × × × ×
××××××2C

2V × ×
×××4C
××4V

5C × ×
5V × ×

×ECC × × × ×
××ECV

× ××ECL

a Prefixes: 2, second-order; 4, fourth-order; 5, fifth-order; EC, east coast; and suffixes: C, constant spatial discretiza-
tion; V, �/�x (variable) spatial discretization; L, LTEA spatial discretization.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 925–945
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the simulation. Stability changes with the predictor–corrector algorithm were determined from
these steps: (1) each domain was evaluated using the original algorithm to obtain the
maximum stable time step for each type of spatial discretization; (2) each domain was
evaluated using the predictor–corrector algorithm to obtain the maximum stable time step for
each type of spatial discretization; (3) results from the two previous steps were compared to
one another, and a per cent change between the two resulting time steps was obtained. It
should be noted that since each corrector iteration requires another solution to the system
matrix, only simulations that show more than a n×100 per cent change, where n is the
number of corrector steps, are considered cost-effective. This is a conservative estimate because
it assumes the entire load vector is re-evaluated with each iteration, while in reality, only the
k*/k+1 portion of the non-linear terms needs to be updated.

5.2. Iteration experiments

We examined two different issues with regard to the number of corrector iterations. The first
issue, which can be considered more of a stability issue, involved determining the number of
corrector iterations needed before the value of maximum stable time step did not change. The
second issue, which is more of an accuracy issue, was to evaluate whether additional corrector
iterations were needed to reach convergence for the elevation and velocity fields.

To address the stability issue, we performed experiments using three different bathymetry
types (constant, fourth-order and east coast) and determined that the maximum stable time
step did not vary greatly (0–5 per cent) from one to three corrector iterations. However, one
term, the GWCE flux times G term (Gg, see Equation (2)) when updated independently in the
east coast domain, shows a non-trivial decrease in the maximum stable time step from the first
corrector iteration to the second corrector iteration, after which it stabilized. Closer analysis of
this problem shows that a neutrally stable situation is reached with one corrector iteration, i.e.
the solution remains bounded, but the results are not physically realistic. When more than one
corrector iteration was used, results with the smaller time step are realistic.

Regarding the accuracy issue, we performed experiments on three different bathymetries
(constant, second-order and east coast) to determine the number of iterations needed for the
solution to converge. An L2 norm was used to measure the difference between the elevation
and velocity solutions from successive corrector iterations. Results show that the average L2

norm between the first and second corrector iteration was on the order of 10−5–10−7 ft or
ft s−1, depending on the domain, when updating all non-linear terms together using the
centered scheme since the magnitude of the solution was on the order of 10−1–101, we
considered this sufficiently converged.

A general conclusion from the stability-related iteration tests is that a single iteration of the
corrector step is sufficient unless the GWCE flux times G term is the only non-linear term
updated, in which case two corrector iterations are recommended. Accuracy-related results
show that a single iteration is needed to reach convergence. Moreover, our experience shows
that spatial truncation errors generally dominate temporal truncation errors. Thus, taken
together, the evidence suggests a single corrector iteration is adequate and was used in the
remainder of the experiments. This means that a per cent increase in �t of 100 is the minimum
needed for the algorithm to be cost-effective.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 925–945
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5.3. Stability testing—non-linear terms e�aluated indi�idually

For the numerical experiments with the predictor–corrector algorithm, each non-linear term
was evaluated individually with the following time weights: (1) centered at k, e.g., the ag term
would have the time weights of example 1 in Table II, while the fg, Gg, am, and bg terms
would be ‘turned off’ as in example 5 in Table II; (2) centered at k+1/2, e.g., the ag term
would have the time weights of example 2 in Table II, while the fg, Gg, am, and bg terms
would be ‘turned off’ as in example 5 in Table II.

Results are summarized in Table IV where positive increases in the allowable time step are
shown in bold. Recall that a 100 per cent change is required for the algorithm to be
cost-effective. In short, the major findings from the stability experiments on individual terms
are as follows: (1) with the predictor–corrector algorithm, more than 100 per cent change in
the maximum stable time step can be realized for most of the domains by iterating on the
GWCE flux times G term (Gg); some of the simulations displayed over a tenfold increase from
the original algorithm, and it should be noted that in these cases the Courant number is greater
than one; (2) for the non-linear terms in the GWCE, the ‘centered at k ’ time-weighting scheme
produced the greatest increase in the stability; (3) for all the domains evaluated, constant
spatial discretization allows for a greater per cent increase in the maximum stable time step
than the variable spatial discretization (this does not necessarily imply a higher Courant
number); and (4) the largest decreases in stability were found when the non-linear terms used
a time-weighting scheme that is different from the original equation’s time-weighting scheme.

5.4. Stability tests—non-linear terms e�aluated together

Next we evaluated whether an implicit treatment of more than one of the non-linear terms
would provide greater changes in stability. For each domain, we systemically determined the
combination of the non-linear terms that resulted in the largest maximum stable time step (see
Table IV, the ‘Opt.’ column). Note that we also determined the maximum stable time step with
the non-linear terms evaluated with time weights that matched the centered implicit treatment
of the linear terms (see Table IV, the ‘Center’ column). As previously mentioned, for a single
corrector iteration, the per cent change between the new and baseline �t must be greater than
100 per cent in order to be cost effective.

Results indicate that for most of the domains, the largest increase in stability was realized
when four of the non-linear terms were updated, viz., the finite amplitude term (fg), GWCE
flux times G term (Gg), GWCE flux times � term (bg), and the advective term of the NCM
equation (am). An exception is the constant bathymetry case, which demonstrated the largest
increase in the maximum stable time step with two non-linear terms (GWCE flux times G term
(Gg) and the advective term of the NCM equation (am)) being updated. The east coast domain
with constant spatial discretization provided the greatest per cent increase in the time step.
With few exceptions, optimum results were realized when the GWCE non-linear terms were
centered at k and the NCM non-linear term was centered at k+1/2, which follows the
formulation of the other terms in the equations. An exception to this in every domain was the
GWCE advective term (ag), which put all the weight on the present time level; also in the
constant and parabolic-like bathymetries, the GWCE flux times G term (Gg) used a fully
implicit time-weighting scheme. Results for the fully centered scheme indicate that there was a

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 925–945
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decrease in the maximum stable time step as compared to the optimum; however, all results
achieved the 100 per cent threshold.

The most notable observation, and the underlying premise of the paper, was that all
domains and discretization types far exceeded the 100 per cent threshold when using a centered
or optimum combination of the non-linear terms. Comparing this to the stability experiments
with the non-linear terms analyzed individually, we found that in all but one domain
(fifth-order bathymetry), the increase in stability was greater when updating several non-linear
terms together rather than individually. It is significant that the Courant number for all of the
results in this section is much greater than one (the upper-bound for the original semi-implicit
code). In all cases, the variable spatial discretization showed the greatest increase in the
Courant number for the shallow bathymetries, while the constant spatial discretization showed
the greatest increase in the deeper bathymetries.

5.5. G sensiti�ity tests

Sensitivity studies provide information on how parameter changes affect the outcome of the
solution. For this study, we wanted to determine the affect of G, the numerical parameter in
the GWCE, on the maximum stable time step, particularly since this non-linear term impacts
the stability of the one-dimensional problems the most. Sensitivity analyses were conducted on
three domains, which represent a wide range of conditions: constant bathymetry with constant
spatial discretization, second-order bathymetry with constant spatial discretization and the east
coast bathymetry with LTEA spatial discretization. The G-parameter ranged from 0.00001 to
0.1 s−1, while the bottom friction coefficient, �, was kept constant at 0.0001 s−1. Simulations
used the predictor–corrector algorithm with all the GWCE non-linear terms centered at k and
the NCM non-linear term centered at k+1/2. For each parameter value, the maximum stable
time step was obtained, which was then compared to the maximum stable time step from the
original algorithm with G held constant at 0.001 s−1.4 per centage changes between the two
were then calculated; results are shown in Figure 3. From Figure 3(a), it is evident that for the
constant bathymetry the greatest per cent increase in stability occurs when the G/� ratio is
between 2 and 50 with the peak just past 30. Figure 3(b) shows that for the second-order
bathymetry the greatest per cent increase in stability occurs with a G/� ratio between 2 and 50
with the peak just past 10, while in Figure 3(c), we see that for the east coast bathymetry the
greatest per cent increase occurs when the G/� ratio is between 5 and 50 with the peak just past
10. Thus, G/� ratios of 2–5 to 50 serve as the optimum G/� window for each domain, based
on stability.

Previous work by Kolar et al. [20] indicates that the G/� ratio should lie between 1 and 10
if the modeler is concerned about minimizing mass balance errors and errors in the generation
of non-linear constituents. They also showed that as the G/� ratio increases above 100,
oscillations will start to appear in the solutions. Comparing this to the results of the sensitivity
analyses above, we can see that the optimum G/� ratios overlap in the range of 2–10. Thus,

4 We did also look at sensitive changes by varying G in the original algorithm concurrently with the predictor–correc-
tor algorithm. Shapes of the sensitivity graphs changed, particularly for the constant bathymetry, but general
conclusions remain unaltered.
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Figure 3. Sensitivity of stability to the G/� ratio for one-dimensional bathymetries: (a) constant, (b)
second-order, (c) east coast (note: G/tau ratio is G/� ratio.)

if we keep G/� between 2 and 10, we will be able to see both an increase in stability and a
decrease in mass balance errors and errors in the generation of non-linear constituents, yet not
allow the generation of spurious modes.

5.6. Temporal accuracy tests

To evaluate accuracy, we compared a solution using a large time step to a ‘true solution’ of
the same problem. For temporal accuracy, the ‘true solution was obtained using a very fine
time step of one second. Accuracy changes were quantified by analyzing the error, as measured
by pointwise convergence, L2 norm, and L� norm, between the fine and coarse solutions.
Three domains utilized in the accuracy testing were the constant, second-order and the east
coast bathymetries. Each domain was divided spatially into 51 nodes utilizing constant
discretization.

Simulations used the centered scheme for the non-linear terms, where the GWCE non-linear
terms were centered at k and NCM non-linear term was centered at k+1/2. Accuracy changes
were examined for the original algorithm, predictor–corrector algorithm with one corrector
iteration (1st iteration), and predictor–corrector algorithm with two corrector iterations (2nd
iteration). For each domain, the L2 and L� norms were evaluated at 50 discrete times covering
two complete tidal cycles and then averaged. Pointwise convergence was evaluated for the last
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output recorded at three nodes within the domain: node 3 (near ocean boundary), node 25
(middle) and node 47 (near land boundary). Figure 4(a)–(c) shows results using the L2 norm
for elevation for the three domains.

In all domains, the 2nd iteration provided no improvement to the accuracy, which indicates
that global convergence was obtained with only one corrector iteration. For all three domains,
results showed that the predictor–corrector results plotted below or near the original results,
thus indicating equal or less error. The greatest increase in accuracy coincides with domains
where more nodes are located in shallow regions. On the other hand, for domains such as the
east coast, where most nodes are located in deep water, there are few gains in accuracy. One
explanation for this is that wave propagation in deep waters is a weakly non-linear problem,
hence updating non-linear terms is inconsequential. For the constant and second-order
problems, the order of accuracy increased from first-order with the original algorithm to nearly
second-order with the predictor–corrector algorithm, based on the slope of the L2 and L�

graphs. As for the pointwise convergence test, we determined the same changes in the order of
accuracy for the middle node; however, the results for nodes near the ocean or land boundaries
are influenced by the boundary conditions and were inconclusive. Accuracy changes for the
velocity results provided similar findings.

5.7. Scaling analysis

Scaling analysis is used to estimate the order of magnitude of the terms in a differential
equation; they have been proven useful in estimating the relative importance of each term in
shallow water models (e.g. Mellor [23]). Basically, the objective is to recast terms of the
equation from the differential form to an algebraic form so that its relative magnitude can be
estimated from known parameter values. Note that the finite amplitude term was split into two
portions (see Equation (4)) due to the treatment of this term in the solution scheme, where the
linear portion (first term on r.h.s. of Equation (4)) is already treated implicitly, while the
non-linear portion (second term on right-hand side of Equation (4)) is only treated implicitly
with the predictor–corrector algorithm

� · Hg��=� · hg��+� · �g�� (4)

Scaling of the non-linear terms is shown in Table V. In this analysis, we are trying to establish
if a correlation exists between the scaled value of the non-linear terms and the results from the
stability experiments. Scaled values of the non-linear terms were normalized to the time
derivative term for each equation in order to make the analysis dimensionless.

Domains used in this analysis were the constant, second-order, and the east coast
bathymetries, all with a constant spatial discretization. Parameters for evaluating the scaled
terms are shown in Table VI. Note that G and � values are typical simulation values, while T
is the period of one M2 tide and L� is one-half the wavelength of the M2 tide. Each domain
was divided into 51 nodes; bathymetry values (see Table VI) for the scaling analysis were taken
from the third node (near the ocean boundary) and the 47th node (near the land boundary).
These two nodes were chosen because we wanted to analyze sensitivity of the scaling results to
deep and shallow ocean bathymetries. Elevation and velocity values come from a 14-h
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K. M. DRESBACK AND R. L. KOLAR938

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 925–945

F
ig

ur
e

4.
R

es
ul

ts
of

th
e

te
m

po
ra

l
ac

cu
ra

cy
te

st
s:

(a
)

co
ns

ta
nt

,
(b

)
se

co
nd

-o
rd

er
,

(c
)

ea
st

co
as

t.



IMPLICIT TIME-MARCHING FOR GWCE-BASED SHALLOW WATER MODELS 939

Table V. Scaled form of the non-linear terms

Abbreviations Non-linear term Scaled form

� · {� · (Hvv)}ag
1
L
�Huu

L
�

� · �g��
1
L
�

g�
�

L
�

fg (non-linear portion)

� · hg��fg (linear portion)
1
L
�

gh
�

L
�

G� · (Hv)Gg G
�Hu

L
�

�� · (Hv)bg �
�Hu

L
�

am v · �v
uu

L

(constant bathymetry) or 50-h (second-order and east coast) simulation. Normalized values
were then compared to the results of the stability experiments, where each term was evaluated
individually (see Table IV). Results from the stability experiments are scaled to the GWCE flux
times G term (Gg), since this term is the most influential term in that study.

Figure 5(a)–(c) illustrates the trends, where the bars show results of the scaling analysis and
the lines show the results of the stability experiments; the left y-axis is associated with the bars
and the right y-axis accompanies the line on each graph. Deeper bathymetries (third node) are
the open bars, while the cross-hatched bars are the shallower bathymetries (47th node).
Non-linear terms, designated by their appropriate abbreviations, are shown on the x-axis. A
positive correlation exists if one or both of the bars follows the same trend as the line.

Table VI. Parameters used in the scaling analysis

BathymetryParameter

East coastSecond-orderConstant

h-shallow (ft) 16.4 13.3 279.4
16 404.2870.216.4h-deep (ft)

1.2u-shallow (ft s−1) 3.50.48
0.45 0.256.6u-deep (ft s−1)

4.9 6.0 7.8�-shallow (ft)
3.4 3.4�-deep (ft) 3.3

517 116 465 817L-shallow (ft) 2 509 345
16 352 6433 766 372517 116L-deep (ft)

45 000T (s) 45 000 45 000
G (s−1) 0.0010.0010.001

0.00010.00010.0001� (s−1)
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In all the domains analyzed, the GWCE flux times G term (Gg) showed that it was
significant in both the scaling results and the stability experiments results, thus implying that
there is a positive correlation. We also see a correlation with the second-order and east coast
results for the advective terms of the GWCE and NCM equation in that neither is significant.
However, for the constant bathymetry, no correlation for the advective terms is seen, i.e.,
Figure 5(a) shows that both advective terms were significant in the stability experiment results,
but only the GWCE advective term (ag) showed a non-trivial scaled value. No correlation
exists for the GWCE flux times � term (bg) and the finite amplitude term (fg) for any of the
domains. It is evident that these latter two non-linear terms did not have a significant impact
in the stability experiments, but in the scaling analysis, they show some significance, particu-
larly for the deeper portions of the domains.

Focusing now on only the scaling analysis results, we can infer dominant physical processes
for each of the domains by looking at the magnitude of each term. In the deeper depths, the
advective terms (am and ag) are not significant since the velocity values and gradients are
lower due to the heightened water column (see am and ag bars in Figure 5(b)). In the shallow
depths, the velocity values and gradients increase due to the shortening of the water column.
Thus, in domains where the bathymetry is shallow, the advective terms (am and ag) can be
significant, so this term needs to be treated implicitly with the predictor–corrector algorithm
(e.g. ag term for constant bathymetry).

Another observation comes from analyzing the behavior of the finite amplitude terms (fg).
From the scaling analysis of the second-order bathymetry, we notice that the non-linear
portion of this term is significant in the shallow portions of the domains (see Figure 5(b))
because the change in the elevation is larger. Thus in domains where the bathymetry values are
predominantly shallow, the non-linear portion of the finite amplitude term is often significant,
so it should be treated implicitly when using the predictor–corrector algorithm. As for the
linear portion of the finite amplitude term, the scaling analysis shows that it is significant in
both deep and shallow bathymetries. Taken together, the results indicate that the finite
amplitude term in Equation (2) should always be treated implicitly.

The relative significance of the GWCE flux terms (Gg and bg) depends primarily on the
value of � and its relation to the G-parameter. Only when � is equal to or greater than the
G-parameter will the GWCE flux times � term (bg) be as significant as the GWCE flux times
G term (Gg). In most domains, the G-parameter is chosen to be equal to or greater than the
�-parameter (optimum G/� between 2 and 10, as recommend by Kolar et al. [20] and also
indicated by the sensitivity studies in this paper). For the upper end of this range, the GWCE
flux times � term (bg) need not be treated implicitly when using the predictor–corrector
algorithm, but the GWCE flux times G term (Gg) must be treated implicitly. On the other
hand, if G and � are of the same magnitude, or if a non-linear parameterization of � (e.g.
Chezy equation) is used wherein its value is not known a priori, then both should be treated
implicitly.

In summary, the most significant term throughout the scaling analysis has been the GWCE
flux times G term (Gg), and it is the only one consistently showing strong positive correlations;
all other non-linear terms have a regional impact. These results indicate that the GWCE flux
times G term (Gg) should always be treated implicitly. The GWCE advective term (ag) and the
NCM advective term (am) should be treated implicitly in the predictor–corrector algorithm for
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simulations that have regions of high advective accelerations. The finite amplitude term (fg)
should be treated implicitly for both shallow and deep water simulations, and the GWCE flux
times � term (bg) should be treated implicitly when G and � are the same order of magnitude
(or if a non-linear parameterization of � is used). Thus, codes using this predictor–corrector
algorithm should allow the user the option to select which non-linear terms to update in the
corrector loop.

6. CONCLUSIONS

The primary objectives of this paper were to examine the use of a predictor–corrector
algorithm for one-dimensional simulations and quantify its affect on stability and accuracy.
Influence of mesh generating techniques (�/�x versus LTEA) was also examined for the east
coast bathymetry. Lastly, a scaling analysis was used to determine if a correlation exists
between the relative magnitude of the non-linear terms and the results from the stability
experiments.

In general, the predictor–corrector algorithm allows a dramatic increase in the maximum
stable time step for all the domains examined. Significant conclusions that we can draw from
this study are listed below.

� Only one iteration of the corrector step in the predictor–corrector algorithm is necessary,
both in terms of stability and accuracy.

� When evaluating the non-linear terms individually with the predictor–corrector algorithm,
there is at least 100 per cent gain in the maximum stable time step for most of the test
problems evaluated. For some of the simulations, there is a tenfold increase in the results.

� Stability results show the maximum increase occurs when the non-linear terms were
evaluated either four at a time or all five at a time.

� The GWCE flux times G term (Gg) influences stability the most.
� Experiments showed that stability is influenced by the mesh generating technique.
� From the G sensitivity study, it is evident that the G values that produce minimal mass

balance errors and errors in the generation of the non-linear constituents coincide with
those that produce the maximum stable time step (G/� between 2–5 and 10).

� Temporal accuracy tests show that the predictor–corrector algorithm reduces absolute
error and increases the order of accuracy. In fact, the order of accuracy changes from being
first-order with the original algorithm to nearly second-order with the predictor–corrector
algorithm for highly non-linear problems.

� From the scaling analysis, we see that the GWCE flux times G (Gg) is the most significant
of the non-linear terms in the domains evaluated.

� Also from the scaling analysis, it was evident that the finite amplitude term (fg) is
significant in both the shallow and deep parts of the domains; the GWCE flux times � term
(bg) is only significant if the G-parameter is less than or equal to the �-parameter or if a
non-linear parameterization of � is used.

� Stability improvement and the optimum set of time weights are grid and problem
dependent; thus, there needs to be an option that allows the user to treat some or all the
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non-linear terms implicitly. Lacking performance testing, we generally recommend that all
the GWCE non-linear terms should be centered at k and the NCM non-linear term should
be centered at k+1/2.

It is apparent from these results that the predictor–corrector algorithm signifi-
cantly enhances the ability of ADCIRC to perform fast, reliable simulations. Studies with a
wide variety of two-dimensional domains is on-going and will be reported in a subsequent
article.
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APPENDIX A. NOMENCLATURE

atmospheric force (L2/T2)A
linear wave celerityc
Courant number, equals c�t/�xCr

C0 set of continuous functions over � whose first derivative is, at most,
discontinuous at a finite number of points in �

f Coriolis parameter, equals 2� sin �

gravity �g� (L/T2)g
G numerical parameter in the generalized wave continuity equation (1/T)

bathymetry (L)h
H total fluid depth, equals h+�(L)

spatial indexi
time-weighting parameter, temporal indexk
lengthL
symbol for primitive continuity equationL
massM
symbol for primitive momentum equation, non-conservative formM

MC symbol for primitive momentum equation, conservative form
pressure (M/LT2)p
atmospheric pressure (M/LT2)pa

timet
time period for tidal constituents (T)T
macroscopic stress tensor (M/LT2)T
scalar fluid velocity in one-dimensional problem (L/T)u

v velocity of the fluid (L/T)
symbol for the generalized wave continuity equationW G
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Greek letters
earth elasticity factor�

eddy viscosity (L2/T)�

� Newtonian equilibrium tidal potential
elevation of water surface above the datum (L)�

wavelength�

density (M/V)�

� bottom friction coefficient (1/T)
angular velocity of the earth (1/T)�

Special symbols and operators
� nabla (grad) operator (1/L)

divergence operator (1/L)� ·
�/�t partial derivative (1/T)
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